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We study evolution equations for electric and magnetic field amplitudes in a ring cavity with plane mirrors.
The cavity is filled with a positive or negative-refraction-index material with third-order effective electric and
magnetic nonlinearities. Two coupled nonlinear equations for the electric and magnetic amplitudes are ob-
tained. We prove that the description can be reduced to one Lugiato-Lefever equation with generalized coef-
ficients. A stability analysis of the homogeneous solution, complemented with numerical integration, shows
that any combination of the parameters should correspond to one of three characteristic behaviors.
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I. INTRODUCTION

During the last decade, composite material developments
allowed the experimental realization of materials with
negative-refraction index �1,2�, theoretically predicted by Ve-
selago �3�. These materials have simultaneously a negative
dielectric permittivity and a negative magnetic permeability,
a property that is not found in natural materials. Negative-
refraction-index materials �NRMs� have many new and in-
teresting properties, such as a refracted wave on the same
side as the incoming wave with respect to the surface normal
and Poynting vector in the direction opposite to wave vector.
A number of applications have been proposed based on their
new properties, such as perfect lenses, phase compensators,
and electrically small antennas �4–7�.

Most studies on NRM consider linear relations between
electric field and polarization, and magnetic field and mag-
netization. The study of nonlinear effects acquired increasing
interest during the last years. It is known that the propagation
of an electromagnetic wave in a Kerr nonlinear material,
with positive refraction index, can be described by a nonlin-
ear order-parameter equation of the Schrödinger type �8�,
and that the same kind of equation can be extended to an
NRM �9–13�. Nevertheless, it has been shown �14,15� that a
composite metamaterial with negative-refraction index can
develop a nonlinear macroscopic magnetic response. This
means that, although the host medium has a negligible mag-
netic nonlinearity, the periodic inclusions of the metamaterial
produce an effective magnetic nonlinear response when the
wavelength is much larger than the periodicity of the inclu-
sions. In the rest of the paper, when we speak about magnetic
nonlinearity we refer to this macroscopic magnetic response
present only in metamaterials. Electric and magnetic nonlin-
earities in composite materials have been also analyzed in,
for example, �16–19�.

In this paper, we are interested in the analysis of the equa-
tions that describe the electric and magnetic fields in a ring
cavity with plane mirrors containing a material with negative
or positive refraction index and with electric and magnetic
nonlinearities. The aim of the work is to obtain a simple
mathematical description of this system, useful to identify

relevant parameters and to analyze typical behaviors.
The paper is organized as follows. In Sec. II we present

the equations for the evolution of the electric and magnetic
field amplitudes in a ring cavity �the derivation, starting from
two coupled nonlinear Schrödinger equations, is in the ap-
pendix�, and show that the description can be reduced to one
Lugiato-Lefever �LL� equation �20� with generalized param-
eters. In Sec. III, we analyze the effects of dissipation. In
Sec. IV we use a linear stability analysis to identify three
typical situations that arise depending on the signs of the
three parameters of the equation. Numerical integration sup-
ports and completes the previous analysis. In Sec. V we
present our conclusions.

II. EQUATIONS IN THE CAVITY

The equations that describe the behavior of the electric
and magnetic fields in a plane perpendicular to light propa-
gation are of the type of the LL equation. The LL equation is
a simple mean-field model that has been useful for the analy-
sis of pattern formation in a cavity with flat mirrors contain-
ing a Kerr medium and driven by a coherent plane-wave
field; see also �21,22�.

We will first analyze the problem of free propagation
�without mirrors� of an electromagnetic wave in the material
and afterwards will use the resulting equations to derive the
behavior in the cavity. We will consider a linearly polarized
driving field with frequency �0. Let us suppose that the elec-
tric field is in the x direction and the magnetic field is in the
y direction. The starting point are the Maxwell’s equations
and the constitutive relations for the electric displacement,
D=�0E+ P, and the magnetic induction, B=�0H+�0M.
�There is an interesting alternative approach, described in
�23� in which the fields E, D, and B are used, with D= �̃E
and B=H, where �̃ is a generalized dielectric constant.�

Considering an isotropic metamaterial with third order
nonlinearities, the nonlinear relation between polarization P
�in the x direction� and electric field E is
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P�t� = �0�
−�

�

�e
�1��t − ��E���d� + �0�

−�

�

�e
�3��t − �1,t − �2,t

− �3�E��1�E��2�E��3�d�1d�2d�3, �1�

where �e
�1� and �e

�3� are the linear and nonlinear electric sus-
ceptibilities �8�. The same geometric arguments used in Eq.
�1� can be applied to the relation between magnetization M
and magnetic field H,

M�t� = �
−�

�

�m
�1��t − ��H���d� + �

−�

�

�m
�3��t − �1,t − �2,t

− �3�H��1�H��2�H��3�d�1d�2d�3, �2�

with �m
�1� and �m

�3� being the linear and nonlinear magnetic
susceptibilities. Let us remark that �e

�1�, �e
�3�, �m

�1�, and �m
�3�

describe macroscopic effective response of the metamaterial
valid for a driving field with a wavelength much larger than
the periodicity of the inclusions. We are assuming that the
field intensities are small enough in order to neglect higher
order terms. The effective macroscopic magnetic nonlinear-
ity can become relevant in metamaterials, as shown in �14�,
in contrast with what happens in conventional optics, where
magnetic nonlinearities are negligible.

The classical multiple-scales perturbation technique will
be applied, in which it is assumed that the light is quasimo-
nochromatic and can be represented by a plane wave, with
frequency �0 and wave number k0, propagating along the z
axis and modulated by a slowly varying envelope. The enve-
lope depends on space R= �X ,Y ,Z� and time T variables that
have characteristic scales much greater than the scales given
by 1 /k0 and 1 /�0. The fields E and H can be written in the
following way:

E = E�R,T�ei�k0z−�0t� + c.c.,

H = H�R,T�ei�k0z−�0t� + c.c. �3�

where E and H are the slowly varying amplitudes. Similar
relations hold for P and M.

Let us define the wave number k���=�n��� /c; the refrac-
tion index is n���= 	��r����r��� �it takes the negative sign
when both, �r and �r are negative �3��, where �r���=1
+�e

�1���� and �r���=1+�m
�1���� are the relative permittivity

and the relative permeability respectively. In particular, k0
=�0n /c, with n=n��0�, and we call k� and k� the derivatives
of k��� evaluated in �=�0.

The details of the application of the multiple-scales tech-
nique in our case are essentially the same to the ones de-
scribed in Ref. �8�, Sec. 2k, for a positive refraction index
material with only electric nonlinearity. After this process,
we arrive to the following coupled non linear Schrödinger
equations for the envelopes of the electric and magnetic
fields:

�E
�


= −
ik�

2

�2E
�t2 +

i

2k0
��

2 E +
i3k0

2
��e

�3�

�r
�E�2 +

�m
�3�

�r
�H�2	E

�4�

�H
�


= −
ik�

2

�2H
�t2 +

i

2k0
��

2 H +
i3k0

2
��e

�3�

�r
�E�2 +

�m
�3�

�r
�H�2	H

�5�

where, in the left-hand side, the transformation 
=z, �= t
−k�z, was used; the transverse Laplacian ��= � �2

�x2 , �2

�y2 � is
defined in the plane perpendicular to the z axis. The relative
permittivity and the relative permeability, �r and �r, are
evaluated in �0. The nonlinear electric and magnetic suscep-
tibilities, �e

�3� and �m
�3�, are the Fourier transforms evaluated

in ��0 ,�0 ,−�0�. Dissipation �linear or nonlinear� is ne-
glected so that �e

�1�, �m
�1�, �e

�3�, and �m
�3� are real quantities. This

is an often met approximation in conventional optics, but
dissipation could play a relevant role in metamaterials. In
this section we will derive the equations for a material with-
out dissipation, and in Sec. III we will analyze how these
equations are modified when dissipation is taken into ac-
count.

The nonlinear electric susceptibility is usually written as
�e

�3�=� /Ec
2, where �= 	1 stands for a focusing or defocus-

ing nonlinearity and Ec is a characteristic electric field. Equa-
tions �4� and �5� are an extension of the analysis performed
in �9,10� to include the magnetic nonlinearity, and are similar
to the ones derived in �13�.

For an NRM, k0 is negative, but this does not modify the
sign of the nonlinear terms in Eqs. �4� and �5�, since k0 /�r
and k0 /�r are always positive. The difference appears in the
diffraction term that becomes negative for an NRM.

Figure 1 shows the geometry of the ring cavity. At the
entrance mirror, the input field has amplitudes Ein and Hin,
with Hin=Ein

��0 /�0. The nonlinear material has length L,
the transmission coefficient in the right end of the material
for the electric-field amplitude is t+=1+�, and for the mag-
netic field amplitude is t−=1−�, where �= �−0� / �+0�
with 0=��0 /�0 and =�� /�. The transmission and reflec-
tion coefficients in the input mirror are ti and ri. The time of
a round trip is Tr, the phase accumulated by the wave in a
round trip is �, and the detuning between the pump field and
the cavity mode is �=� mod 2�, with ��1 since we con-
sider that the cavity is close to resonance. It is convenient to
define the quantity �= �ri��1−�2�, the length l
=�L� / �2�k0��1−���, and the characteristic electric field C
= t+Ec

�2�r�1−�� / �3Lk0��. Using the nonlinear Schrödinger

zba

Ein, Hin

L

FIG. 1. Ring cavity with the nonlinear optic material of size
L.
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Eqs. �4� and �5� for the fields inside the cavity, and after the
following change in variables:

A1 =
E
C

, A2 =
H
C
��0

�0
,

x� = x/l, y� = y/l ,

t� = t
�1 − ��

Tr
, �6�

we arrive to two Lugiato-Lefever type equations �the details
of the derivation can be found in the Appendix�:

�A1

�t
= Ain − �1 + i��A1 + i���

2 A1 + i���A1�2 + ��A2�2�A1,

�7�

�A2

�t
= Ain − �1 + i��A2 + i���

2 A2 + i���A1�2 + ��A2�2�A2

�8�

where �=−�� / �1−��, �= 	1 is the sign of the refraction

index n, �=
�0�r

2

�0�r
2 �m

�3� / ��e
�3��, and Ain=

ti

�1−��Ein /C. The primes
have been omitted to simplify the notation.

Let us analyze the difference of the fields: R=A1−A2. It is
possible to prove that R decays exponentially to zero. The
equation for R is

�R

�t
= − �1 + i��R + i���

2 R + i���A1�2 + ��A2�2�R , �9�

from which we get

� �R�2

�t
= − 2�R�2 + i�R̄��

2 R − i�R��
2 R̄ , �10�

where R̄ is the complex conjugate of R. We use the expres-
sion of R in terms of its Fourier transform, R�x ,y , t�
= 1

�2��2 
dkxdkyRkx,ky
ei�kxx+kyy�. The last two terms in Eq. �10�

become

R̄��
2 R − R��

2 R̄ =
1

�2��4� dkxdkydqxdqyRkx,ky
R̄qx,qy

ei�kx−qx�x

�ei�ky−qy�y�qx
2 + qy

2 − kx
2 − ky

2� . �11�

Let us consider the transverse average of Eq. �11�, defined as
the integral over the plane x−y,

�R̄��
2 R − R��

2 R̄� =
1

�2��4� dkxdkydqxdqyRkx,ky
R̄qx,qy

�qx
2 + qy

2

− kx
2 − ky

2�� dxdyei�kx−qx�xei�ky−qy�y

=
1

�2��2� dkxdkydqxdqyRkx,ky
R̄qx,qy

�qx
2 + qy

2

− kx
2 − ky

2���kx − qx���ky − qy� = 0. �12�

Therefore, from Eq. �10� we get

���R�2�
�t

= − 2��R�2� , �13�

that means that the transverse average ��R�2� decays to zero
exponentially with a characteristic time 1/2 �or Tr / �2�1
−��� for the previous time scale�. If, after a transient, we
have ��R�2�=0, then, since �R�2�0 in every point of the trans-
verse plane, we have that R=0 in every point. Then, after a
time of order 1/2, we have that A1=A2. In this situation, the
description of Eqs. �7� and �8� is further simplified to

�A

�t
= Ain − �1 + i��A + i���

2 A + i���A�2A , �14�

where A=A1=A2 and ��=�+�. Equation �14� has the same
form than the Lugiato-Lefever equation, but there are some
differences. In the original version, that considers only an
electric nonlinearity, it was shown �20� that the sign of the
detuning � must be equal to the sign of the nonlinear coef-
ficient, ��, but this is not necessarily the case in Eq. �14�. In
addition, in Eq. �14� the sign of the diffraction term, �, can
be negative or positive depending on the material being an
NRM or not, and the magnetic nonlinearity is included in the
coefficient ��.

In the particular case in which there is only an electric
nonlinearity, i.e., �=0, and using the result of �20� that says
that the sign of � is equal to �, that is equal to 1 �−1� for a
focusing �defocusing� electric nonlinearity, we get,

�A

�t
= Ain − �1 + i�����A + i���

2 A + i��A�2A . �15�

Equation �15� presents an interesting symmetry. Taking its
complex conjugate, and assuming that Ain is real, it can be
seen that a focusing nonlinearity and a positive refraction
index material ��=1 and �=1� is equivalent to the defocus-
ing and NRM case ��=−1 and �=−1�. Also the case ��
=1, �=−1� is equivalent to ��=−1, �=1�. As we will see
below, the equivalences are more involved when the mag-
netic nonlinearity is considered, since the signs of the three
coefficients ��, � and ��� are in general not related among
them.

III. DISSIPATION

Although it is common to neglect dissipation in conven-
tional optics, this is not in general an appropriate approxima-
tion for a metamaterial. In this section we analyze how the
previous equations are modified when dissipation is taken
into account. In this case, the electric permittivity and mag-
netic permeability are complex quantities. The wave number
that was defined as k���= �

c
��r����r��� will also have an

imaginary part. At the frequency �0 we have

k��0� = k0 + ikI �16�

where k0 is the wave number of the plane wave modulated
by slowly varying amplitude �3�, and kI is the imaginary part.

We will consider that the attenuation distance is much
larger than the wavelength. This means that kI�k0. In the
Gigahertz range, it is possible to build an NRM with small
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�and even negligible� imaginary parts of �r and �r as was
shown in, for example, �24,25�.

It is assumed that kI is of second order in the small pa-
rameter used in the multiple-scales perturbation technique,
see ��8�, p.101�. The result is an additional term in the non-
linear Schrödinger equations for the envelopes of the electric
and magnetic fields

�E
�


= −
ik�

2

�2E
�t2 +

i

2k0
��

2 E +
i3k0

2
��e

�3�

�r
�E�2 +

�m
�3�

�r
�H�2	E − kIE

�17�

�H
�


= −
ik�

2

�2H
�t2 +

i

2k0
��

2 H +
i3k0

2
��e

�3�

�r
�E�2 +

�m
�3�

�r
�H�2	H

− kIH . �18�

The additional terms �−kIE and −kIH� represent an exponen-
tial decay of the amplitudes due to dissipation. In Eqs. �17�
and �18�, the nonlinear coefficients �e

�3� /�r and �m
�3� /�r can be

taken as real quantities since the contribution of the imagi-
nary parts correspond to terms of higher order in the expan-
sion of the small parameter.

Following the steps indicated in the appendix, we arrive
to a couple of Lugiato-Lefever equations that have the same
form that Eqs. �7� and �8�, where now the change in variables
is given by

A1 =
E

C�
, A2 =

H
C�
��0

�0
,

x� = x/l�, y� = y/l�,

t� = t
�1 − � + �LkI�

Tr
, �19�

with C�= t+Ec
�2�r�1−�+�LkI� / �3Lk0�� and l�

=�L� / �2�k0��1−�+�LkI��. The scaled detuning is now de-
fined as �=−�� / �1−�+�LkI�, and the input field is Ain

=
ti

�1−�+�LkI�
Ein /C. The definitions of the rest of the coeffi-

cients that appear in Eqs. �7� and �8� remain the same.
Therefore, the case of small dissipation can still be cor-

rectly described by Eqs. �7� and �8�. It is not difficult to see
that the demonstration of the previous section that the ampli-
tudes A1 and A2 are equal after a transient still holds for this
dissipative case. Consequently, the simplified description of
Eq. �14� also holds.

The situation is different if the attenuation distance is of
order of the wavelength, i.e., kIk0, that corresponds to a
factor of merit of order one. This is generally the case for
optical frequencies. Now, the assumption that light can be
represented by a plane wave modulated by a slowly varying
amplitude, Eq. �3�, is no longer valid, because the decay of
the fields due to dissipation takes place in a fast space scale,
and this decay cannot be described by the envelopes E and
H. The situation when the length of the material, L, is much
greater than the wavelength is not interesting since no field
will be detected at the output. There are many proposals to
reduce losses in metamaterials, some of them are �26–31�.

IV. STABILITY OF HOMOGENEOUS STATIONARY
SOLUTIONS

The homogeneous stationary solutions, A0, of Eq. �14� are
obtained by solving

Ain = �1 + i� − i��I0�A0, �20�

where I0= �A0�2. For the intensities we have

Iin = �1 + �2�I0 − 2���I0
2 + ��2I0

3, �21�

where Iin= �Ain�2 is the intensity of the input field. It is well
known that Eq. �21� presents bistability for �����3; i.e.,
there is a range of values of Iin for which there are two stable
solutions of I0. Note that since �=−�� / �1−��, and ��1,
bistability can only be attained when �= �ri��1−�2��1, i.e.,
when the entrance mirror has a high reflectivity and the ma-
terial has a high transmissivity. Another condition to have
bistability is ����0, this condition is automatically fulfilled
when there is only an electric nonlinearity, i.e., when �=0
and �=����.

In terms of the solutions for the intensity I0 obtained from
�21�, the homogeneous solution is

A0 = �1 − i� + i��I0�I0/Ain, �22�

where we have assumed, without loss of generality, that Ain
is real.

A linear stability analysis of A0 gives the following eigen-
values:

�	 = − 1 	 ��3��I0 − �k2 − ����k2 + � − ��I0� , �23�

where k is the wave number of a small perturbation. From
Eq. �23� we can draw the marginal stability curves of Fig. 2.
The same figure applies to both cases: negative and positive
refraction index, that correspond to the negative and positive
parts, respectively, of the horizontal axis. In the regions en-
closed by the curves, the homogeneous solution A0 becomes
unstable. Both regions do not appear simultaneously: one
corresponds to ���0 and the other to ���0. A value of �
=0 was used in the figure, but a different value of � only
represents a horizontal shift of the curves. The homogeneous
solution becomes unstable when the intensity is increased

FIG. 2. Marginal stability curves, I0���� versus �k2, for �=0. In
the dashed region the homogeneous solution becomes unstable.
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from zero an reaches the value I0����=1. Over the instability
threshold, and close to it, it is known that a hexagonal pattern
appears �32,33�, when the critical wave number is different
from 0 �this happens when there is not bistability or, more
strictly, when ���2�.

Equation �14� and its complex conjugate represent the
same physical situation. The only difference present in the
complex-conjugate equation is the sign in front of the three
real parameters �, �, and ��. Using this equivalence we can
identify three typical situations: �a� ����0 and any value of
�; �b� ����0 and ����0; and �c� ����0 and ����0.

In case �a� � and �� have the same sign. We can see in
Fig. 2 that, for �=−1 or 1, the marginal stability curve is
present, so that, as the input field intensity is increased, the
homogeneous solution becomes always unstable. The critical
values of field intensity and wave number are given by

I0,c���� = 1 and kc
2 = 2 − ��� for �� � 2,

I0,c���� = 2���/3 − ��2 − 3/3 and kc = 0 for �� � 2.

In case �b�, the homogeneous solution is always stable. Bi-
stability is not possible in this case since ����0.

In case �c�, the homogeneous solution becomes unstable
only if there is bistability, i.e., when �����3. The critical
values are,

I0,c���� = 2���/3 − ��2 − 3/3 and kc = 0 for �3 � ���

� 2,

I0,c���� = 1 and kc
2 = ��� − 2 for ��� � 2.

If ���3, and ���0, the vertical axis in Fig. 2 is shifted to
the right and crosses the marginal stability curve in two
points that give a range of values of I0 for which the solution
A0 becomes unstable under homogeneous perturbations. This
corresponds to the unstable branch when bistability is
present. Figure 3 shows a sequence of plots with the mar-
ginal stability curve with the values of the homogeneous
solutions indicated on the vertical axis for increasing values
of the input intensity Iin and for �=3 and ��=1. As Iin in-
creases from 2.9 to 2.95 a saddle node bifurcation takes place
in the upper branch of the marginal stability curve �the bi-
furcation happens in the two-dimensional phase space com-
posed by the real and imaginary parts of A0�. As Iin is further
increased, the value of the intensity of the homogeneous so-
lution of the unstable branch �the one that is inside the insta-
bility region delimited by the curve� decreases, until it
merges, in another saddle node bifurcation, with the lower
homogeneous solution.

We have an example of case �c� in Fig. 3 for �=−1,
where the lower homogeneous solution becomes unstable be-
fore it merges with the homogeneous solution of the unstable
branch �see dotted line in bottom right plot of Fig. 3�. The
saddle node bifurcation in the lower branch takes place at I0
approximately equal to 1.18 for the parameters of Fig. 3, but
a modulational instability with a wave number different from
zero takes place at a lower value of I0�I0=1�.

Figure 4 shows four snapshots of numerical integration
results for this case. The initial condition is the lower homo-

geneous solution slightly above the instability threshold �A0
=0.457− i0.908, i.e., I0=1.03�, plus noise of amplitude
0.005. Equation �14� was integrated in a square domain of
256�256 points with periodic boundary conditions, using a
Fourier series representation and a 4th order Runge-Kutta

FIG. 3. Marginal stability curve, I0 versus �k2, for the bistability
case with �=3, and ��=1. The sequence corresponds to increasing
values of Iin, from left to right and from top to bottom: Iin=2.9,
2.95, 4, and 5.05. The small circles on the vertical axis show the
positions of the homogeneous solutions. The negative horizontal
axis corresponds to case �c� and the positive one to case �a�.

FIG. 4. Four configurations of �A�2 against position in the trans-
verse plane, obtained from integration of Eq. �14� for increasing
values of time. Parameters are �=−1, �=3, and ��=1, correspond-
ing to case �c�. The initial condition has intensity I0=1.03 �Iin

=5.02�, slightly above the critical value �I0,c=1�. The system
evolves from the lower to the upper homogeneous solution. The
space and time integration steps are �x=0.25 and �t=0.003. The
gray scale is logarithmic, black corresponds to 0.4 and white to 4.5.

CAVITY EQUATIONS FOR A POSITIVE- OR NEGATIVE-… PHYSICAL REVIEW E 80, 056601 �2009�

056601-5



temporal scheme for the nonlinear terms. At time t=180 the
field still appears homogeneous. At t=270 a pattern charac-
terized by the critical wave number appears �kc=1�. At t
=297 we can see some spatial domains where the field takes
the value of the upper homogeneous solution. These domains
grow until the whole system becomes homogeneous. There-
fore, the numerical results indicate that, as the input intensity
is increased, the lower homogeneous solution becomes un-
stable, but this instability does not give rise to a stable non-
homogeneous pattern. Instead, the system evolves to the up-
per homogeneous solution, that is always stable for �=−1.

Continuing with the analysis of Fig. 3, the situation is
different for �=1 that corresponds to case �a�; in this case
the lower homogeneous solution is always stable until the
saddle node bifurcation takes place. Therefore, as the input
intensity is increased, the lower homogeneous solution does
not simply cross the marginal stability curve and lose its
stability, but, instead, it does no longer exist as a stationary
solution since the homogeneous mode, k=0, becomes un-
stable. We performed numerical integration of Eq. �14� for an
input intensity slightly above the value corresponding to the
saddle node bifurcation. For different values of the homoge-
neous initial condition, the evolution is qualitatively similar
to the one shown in Fig. 5. Initially, only the modes close to
0 are unstable, so that, for short times, the value of the in-
tensity increases keeping, approximately, the homogeneous

shape of the field. For larger times, the system evolves to a
state of optical turbulence or spatiotemporal chaos.

As mentioned before, in case �a� without bistability, an
hexagonal pattern appears close and above the instability
threshold. It was shown in Ref. �34� that, as the input inten-
sity is increased, there is a sequence of different spatiotem-
poral regimes: oscillating hexagons, quasiperiodicity, tempo-
ral chaos and optical turbulence. When there is bistability,
the state of optical turbulence is reached directly as a transi-
tion from the homogeneous state as the input intensity is
increased �see Fig. 5�.

The differences between the stability of homogeneous so-
lutions for positive ��=1� or negative ��=−1� refraction in-
dex materials, when bistability is present, are clearly pre-
sented in Fig. 6. The figure shows the curve I0 against Iin.
The shape of the curve is the same for �=1 or �=−1, but the
stability ranges are different.

The stability analysis is similar to the one presented in
�9�, where only an electric nonlinearity was considered. The
inclusion of the magnetic nonlinearity is explicitly repre-
sented by factor � in �14�. In addition, a result that, to our
knowledge, was not previously reported, is the equivalence
between positive and negative-refraction-index materials
when the signs of the detuning � and the nonlinear coeffi-
cient �� are changed. This symmetry is illustrated, for ex-
ample, in Fig. 2, for �=0. In this case, the behavior for �
=1 and ���0 is equivalent to the behavior for �=−1 and
���0.

V. CONCLUSIONS

Starting from the Maxwell equations, with nonlinear po-
larization and magnetization, it is possible to obtain, using
the multiple-scales technique, two coupled nonlinear
Schrödinger equations for the electric and magnetic field am-
plitudes. From these equations we derived the evolution of

FIG. 5. Intensity �A�2 for increasing values of time calculated
from Eq. �14�. Parameters are �=1, �=3, and ��=1, corresponding
to case �a�. The homogeneous initial condition has intensity equal to
1.19 plus noise of amplitude 0.005, and the input field has Iin

=5.11. The final state corresponds to spatiotemporal chaos that is
reached independently of the value of the initial homogeneous state.
Space and time integration steps: �x=0.125 and �t=0.001. The
gray scale is logarithmic with black equal to 0.1 and white equal to
60. We used a different scale for t=22: black=3 and white=4 in
order to show the transient emerging pattern.

FIG. 6. Intensity of the homogeneous solution I0 against inten-
sity of the input field Iin in the bistability case, with �=3 and ��
=1. The continuous curve corresponds to an always stable homo-
geneous solution. In the rest of the curve, the stability range de-
pends on the sign of the refraction index, �. The part with negative
slope �dotted curve� is always unstable for �=1 or −1. The upper
part �dash-dotted curve� is unstable only for �=1 but it is stable for
an NRM ��=−1�. Equivalently, for the region 1� I0�1.18 the ho-
mogeneous solution is unstable for �=−1 but is stable for �=1.
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the fields in a ring cavity with plane mirrors containing a
material with positive or negative-refraction index and with
effective electric and magnetic nonlinearities. We proved that
the description can be reduced to only one equation that has
the same form of the Lugiato-Lefever equation �20� for a
positive refraction index material with only electric nonlin-
earity.

An original contribution of the paper is the generalization
of the Lugiato-Lefever equation to electric and magnetic
nonlinearities. Let us note that, as was shown in �14�, effec-
tive macroscopic magnetic nonlinearities can become rel-
evant in composite materials that are used to generate a
negative-refraction index. The resulting equation has three
real parameters: the sign of the refraction index �, the detun-
ing �, and the nonlinear coefficient ��. In the original ver-
sion of the Lugiato-Lefever equation, the sign of the detun-
ing is equal to the sign of the nonlinear coefficient,
corresponding to the self-focusing or self-defocusing cases.
In the present version, both signs are independent; in addi-
tion, the diffraction coefficient can be positive or negative
depending on �. Despite the fact that more free parameters
necessarily makes the analysis more complex, using a linear
stability analysis we have shown that any combination of the
parameters must correspond to one of only three typical
cases. In case �b�, ����0 and ����0, the homogeneous
solution is always stable. In case �c�, ����0 and ����0,
the homogeneous solution can become unstable only when
there is bistability, but, in this case, numerical integration
shows that the final state is the homogeneous solution of the
upper branch. Only in case �a�, ����0, the destabilization
of the homogeneous solution, as the input field intensity is
increased, gives rise to a nonhomogeneous state. In this last
case, if there is not bistability it is known that, close to the
instability threshold, the asymptotic state is a hexagonal pat-
tern. If there is bistability, numerical results for �=3 show
that there is a transition from the homogeneous state to op-
tical turbulence as the input field is increased.

In summary, the description, in the plane perpendicular to
propagation, of the evolution of the electromagnetic field in a
cavity with a nonlinear material with positive or negative-
refraction index has been reduced to a Lugiato-Lefever equa-
tion with three parameters: �, ��, and �. These quantities are
functions of the much larger set of parameters of the original
description �based on the Maxwell equations�. One of the
aims of the work was the identification of relevant param-
eters since they allow a better understanding of typical be-
haviors that the system can develop. This kind of analysis is
much more difficult to perform with the original description.
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APPENDIX

In this appendix we present the derivation of cavity Eqs.
�7� and �8� starting from non linear Schrödinger Eqs. �4� and
�5�. It is essentially an extension of the procedure described
in �9� to the case of electric and magnetic nonlinearity.

Using Eqs. �4� and �5�, for a small distance �
, we can
write

F	�
 + �
� = F	�
� + i�
N̂F	�
� � ei�
N̂F	�
� �A1�

where F+=E, F−=H, and N̂ is the operator

N̂ = −
k�

2

�2

�t2 +
1

2k0
��

2 +
3k0

2
��e

�3�

�r
�E�2 +

�m
�3�

�r
�H�2	 .

�A2�

Figure 1 shows the scheme of the cavity with the non linear
material of length L whose left and right ends are at positions
a and b. We call a+ and a− the positions immediately to the
right and to the left of a respectively, and similarly for b+ and
b−. Using the impedance of free space, 0=��0 /�0, and of
the material, =�� /�, the transmission coefficient for the
electric-field amplitude, when light goes from b− to b+, is

t+ =
2

 + 0
= 1 + � �A3�

where �= �−0� / �+0� is a small quantity so that the
transmission coefficient is close to 1. �Even when  is not
close to 0, a transmission coefficient close to 1 can be
achieved by filling the cavity with a substance with an im-
pedance close to .� The transmission coefficient for the
magnetic field amplitude in b is

t− =
20

 + 0
= 1 − � . �A4�

Using also the transmission and reflection coefficients in the
input mirror, ti and ri, we obtain the following relations:

F	�b+� = t	F	�b−�

F	�a+� = t�F	�a−�

F	�a−� = �ri�ei�F	�b+� + tiFin	 �A5�

where Fin+=Ein, Fin−=Hin, and �, the phase accumulated in a
round trip, includes the phase change of 4� due to reflection
in the four mirrors. We will consider that the system is close
to resonance so that the detuning is ��1, with �
=� mod 2�. Let F�	 be the value of F	 after one round trip
in the cavity, that takes a time Tr. Applying relations �A1�
and �A4� we find �subindices 	 are removed for simplicity�
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F� = tiFin + �ri��1 − �2�ei�eiLN̂F

� tiFin + �ri��1 − �2��1 + i� + iLN̂�F . �A6�

According to Eq. �A2�, the operator N̂ depends on the fields
inside the material, but, in Eq. �A6�, F corresponds to the

fields outside the material, so N̂ should be evaluated in t�F	.
Writing the time derivative of F as �F�−F� /Tr, and defining
�= �ri��1−�2�, we obtain,

Tr

�F
�t

= tiFin + �� − 1�F + i��F + i�LN̂F . �A7�

After replacing the operator N̂ by its definition �Eq. �A1��
and using the change in variables defined by Eqs. �6�, we
arrive to Eqs. �7� and �8� for the amplitudes of the electric
and magnetic fields in the cavity. It can be shown that, in the
cavity equations, the dispersion term proportional to k� in
Eq. �A2� can be neglected.
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